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ADDEWUM 

Relativistic kinematics of interferometry 

G C Scorgie 
8 Balmoral Place, Gourock, Renfrewshire PA19 IAN, UK 

Received 5 May 1993 

Absbaq. In a stationary metric relations are established between the classical motion of a 
representative particle and the eikonal for the associated de Broglie waves for particle 
beams. It is shown that the group velocity of the waves is the same as the coordinate 
velocity of the particle. An explicit expression forthe eikonal in terms of the particle motion 
resolves a paradox that a n  result from taking the proper time of the particle to be a 
measure of the eikonal. 

The paper by Scorgie (1993) treated quantum mechanical interference of beams of 
material particles in terms of the motion of a representative particle assumed to travel 
'on the exactly defined classical trajectory. Wave aspects entered only through the intro- 
duction of the angular frequency of the associated de Broglie wave, the phase ditrerence 
that accounts for interference being calculated as the product of that angular frequency 
and the difference between the coordinate time of transit of particles on their classical 
trajectories. 

I t  may be objected that this is a piecemeal procedure that invites closer examination 
by relating it to the more usual approach in which attention focuses on the wave aspects. 
This addendum describes such an examination. In particular for a free particle it is 
shewn that the group velocity of the de Broglie waves is equal to the particle coordinate 
velocity that formed the basis of the treatment in the paper. Of murse it would be 
disturbing if this were not so, but since both velocities are expressed using coordinate 
measures of distance and time in a non-inertial coordinate system, the equality can 
scarcely be taken for granted. An explicit expression is found for the phase of the wave 
in terms of the particle motion and is shown to resolve a paradox that was noted in 
the paper. The earlier notation is broadly retained and extended as necessary. 

~ ~ The square of the element of interval 

drZ=gmn dx" M+2gm463" dx4+g44(dx4)' 4 1 )  

d?=d0~+2g,,J" da  d ~ ~ + g 4 4 ( d x ~ ) ~  (2) 

can be written 

the element of coordinate (not physical) length being dcr and X" being unit tangent to 
the path in 3-space. Thus a particle trajectory or an integral curye of a vector field 
constitutes a two-dimensional spacetime on which we can assign coordinates 11' = O, 
11 --x --e , with T the coordinate time which is also the proper time of the observer 
launching and subsequently detecting the interference of the particle beams. Latin 
indices run from 1 to 3 in the four-dimensional spacetime. In the two-dimensional 
spacetime 
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&=G,,df d$ 

Gii= l  Gi4=gm4Am G44'g.u (3) 
GI1 = GgM GL4=-Ggmdm @=GE-[lg441 +(&a m 2 1 - I  . 

In what follows it Wiu be clear from the context whether we are working in this two- 
dimensional spacetime in which Greek indices take only the values 1 and 4 or in the 
four-dimensional spacetime. 

The eikonal equation {(38) in Scorgie 1993) for the quantum mechanical wave can 
be written 

&A'= -(me/fi)* (4) 
the rest mass of the particle being m and the wavevector for a wave having phase 9, 
being 

A " = G a B ~ . ~  (5) 
the comma denoting partial differentiation. The properties associated with the wave- 
vector are expressed by writing it in the form 

Aa=qiY + (qz/c)Ba (6) 
Bo being the 4-velocity of the k e d  coordinate point (ql k e d  in the two-dimensional 
spacetime), ca being unit 4-vector orthogonal to the 4-velocity, and q, and q2  being 
reciprocal lengths which according to (4) are related by 

q?-&=-(mc/ii)2. (7) 

In the two-dimensional coordinates 

<a = (G11)-1/26L Ba=cl GMI -1/26;, 

To find the group velocity of the waves, using coordinate measures of distance 0 and 
time T, we have the element of phase 

dP=& df=A1 do+&c dT. 

Hence from (6) and (8) the wavenumber q and angular frequency w are given in terms 
of the covariant components of the wavevector by 

4'Ai =qE( G11)-1/2 + 42 I Gal -IpGi4 

0 = -c& = cqz I GM I (9) 

Expressing q1 and 42 in terms of q and w ,  we can then regard (7) as the dispersion 
relation and so find the reciprocal of the group velocity to be 

m 2 1p (10) 

(11) 

P== 1% i - ' { g ~ l ~ m + ( q ~ / q ~ ) ~ i g ~ i  +km& 1 1 

P = I Cg441-'{gmdmmfn[ 1844 I + kdm)21"2} 
which is to be compared with the reciprocal velocity of the particle 

which formed the ba'sis for the treatment in the paper, the refractive index for the 
particle being n. 

To show that (IO) and (11) are identical for a free particle notice that unit tangent 
to its geodesic is (fi/mc)Aa. The time component of the cotangent is a constant denoted 
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by K-'  in^ the four-dimensional coordinates; and a covector has the same time compo- 
nent whether expressed in four-dimensional or two-dimensional coordinates. Hence we 
can write 

K'=(fi/mc)&=-(fi/mc)qz lger 1'/'. (12) 

n = [l - K' 1844 p. (13) 

Also it was shown in Scorgie (1993) that the refractive index for the free particle is 

Substituting from (12) gives 

n = [I - (mc/~+iqz)~]-'". 

Then (7) gives 

92/91 = +n (15) 

showing that (10) and (11) are identical. 
The element of phase of the wave, A, dqn = d9, is 

d9= w I Cg~1-'{gmdm+ (gI/qz)[ lger I + kmd.")zI1p} do-  0 dT. (16) 

From (9) and (12) the angular frequency 

w = cq2 lg44 I 'IZ (17) 

is constant in the two-dimensional spacetime. 
To see how (16) works out in practice, consider the simple case where rotation of 

the observer's space axes is ignored ( g m d = O )  and the interference results from two 
waves that travel along their respective paths having the same coordinate length o but 
differing in gravitational potential by an amount A y .  

Equation (22) of Scorgie (1993) gave ncsmAy/c3 for the phase difference that causes 
interference. In the wave picture, from (16) and (17) and with 

dT= 0, 

dV=(w/c)(qi/qz) Igerl-l/z do=qi  ha. 
Hence the difference between the phase increments over the two paths is 

A ~ = A ~ , &  

From (7) and (17) with lg,,.,11/2= 1 - y/cz 

AV= (q~/g~)Aq~o=nomAv/c~ (19) 

which is the value obtained in Scorgie (1993). 
Of course in the wave picture the phase differences that produce interference are 

evaluated at constant coordinate time T as in this calculation. There is no question of 
finding the relevant phase increment by integrating (16) following the motion of the 
particle. Nevertheless it is interesting to ask what would be the result of such a calcuia- 
tion. To answer this question recall that the reciprocal of the particle velocity is given 
by (IO). Hence to follow the motion of the particle we put dT=pg d o  in (16), obtaining 

d9=-q l(n2- 1)[1+ lg441-'(g")2]'/2 dc. (20) 
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Now equation (4) of Scorgie (1993) gives the particle proper time element 

dz =c-’(n’- 1)‘’’[1 + IgaI-’(g,4Am)2]1’2 dc. 

d9= -(&-&)I”c dz = - (m2/i i )  dz: 

(21) 

(22) 

Hence following the motion of the particle 

Apart from the negative sign this reproduces the identification q=(mc2/R)z mentioned 
in Scorgie (1993) where, in fact, the argument strictly allowed either sign. The negative 
sign is required if -m&, regarded as the action, is to be a minimum on a free path, 
as pointed out by Landau and Lifshib (1962). 

These remarks, and the expression (16) for the element of phase, resolve a paradox 
that was mentioned in Scorgie (1993). The paradox comes about by applying (21) to a 
closed ring interferometer in which two beams of particles are launched from a common 
point fixed on the ring and travel in opposite directions round it to interfere at the 
launch point. Provided the refractive index (if not constant) is a function only of 

~~ position on the ring integration of (21) shows that the proper time increment is the 
same for both directions of travel. Hence if proper time of the particle is accepted as a 
measure of the phase of the wave it would seem that the waves associated with the 
oppositely travelling particles must interfere constructively and independently of gravity 
and non-inertial motion of the ring. On the contrary, of course, the closed ring interfero- 
meter does respond to both of these iduences. For example the first term in curly 
brackets in (16) gives rise to the Sagnac effect. Thus although particle proper time is a 
measure of the phase of the wave in the context of the argument leading to (22) it does 
not follow that equality of proper times over two paths implies equality of phase 
increments for assessing degree of interference of the associated waves. 

Finally some general remarks may be made. Equation (16) provides an exact solu- 
tion of the eikonal equation (4) in a form that is believed to be novel. An expression 
that in some respects is less explicit has been given by Anandan (1977) in terms of a 
time-like Killing vector as an auxiliary feature. 

Although the two approaches discussed in this addendum (that based on representa- 
tive particle motion and that based on the wave picture) are fully equivalent for free 
particles, there remains an interesting difference between them. The relations obtained 
for the wave picture assume free particles whereas the basic relation (11) for particle 
motion holds without restriction. Of course it is only for free particles that the refractive 
index in (1 1) has the value given by (14). This emphasizes the fact that (1 1) is a purely 
kinematic relation: the dynamics enters in determining the refractive index to be used 
in (1 1). These considerations suggest that the particle picture may plausibly be used in 
calculating the effect, on interference pattems, of departure from free particle motion, 
if the effect of the departure can be expressed through a change in the refractive index 
for the classical particle. 
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